

27th November - 4th December 2013 Sri Lanka

# Overview of Mahaweli Programme to Enhance the water Security

Eng. N.C.M Navaratne, Deputy Director General (Technical services) Mahaweli Authority of Sri Lanka



#### CONTENT

Historical Background of Water Resources Development in Mahaweli Basin for Water Setawey Development PROJECT

Mahaweli Development programme.

- Accelerated Mahaweli Programme.
- Achievements of MASL to enhance water Security
  - Physical Constructions
  - Upper watershed management
  - Proper O&M of Reservoirs and Conveyances
  - Integrated approach to reduce water usage and increase productivity.
  - Rehabilitation of Dams/Reservoirs for sustainability of water security

**Future Programmes and projects to enhance water security.** 

- Moragahakanda and Kaluganga Reservoirs
- Raising Maduruoya Reservoir Spillway
- Raising Kotmale Dam
- Raising of Minipe Anicut
- Diversion of Water from Randenigala Reservoir.
- Pumping Options from Mahaweli River.
- Diversion of water to other basins Meeoya, NCP Canal.



# Water Security?

Water security has been defined as "the reliable availability of an acceptable quantity and quality of water for health, livelihoods and production, coupled with an acceptable level of water-related risks."

Level of Water Security of a country is a Key Indicator of its Development Potential.

## History of Water Security in Sri Lanka.

- Sri Lanka has a written Irrigation Heritage over 2500 years
- Settlements based on river basins
- Thousands of small tank located all over the country
- Irrigation and Agriculture based development
- Country was self sufficient in food.
- Three elements of irrigation system
  - Kala Oya- Malwathu Oya area
  - Abanganga- Mahaweli Ganga area
  - Walawe- Kiridi Oya area
- No Settlements in the hill Country
- No Reservoirs constructed across Major Rivers.





## History

## In Colonial Era



## History

#### Colonial Era (After 1815)

- Wet Forests cleared
- Economic and social changes
- Land Use changes
- Settlements moved to hill Country
- Urbanization Process
- Rapid Population in Wet Zone
- Land Fragmentation

Change of climate

Flash floods,

- Dried out rivers
- Longer drought periods threatening to water security
- Food scarcity

NEED OF WATER RESOURCES PLANNING FOR FOOD & WATER SECURITY

**Resulted** in



#### Mahaweli Authority of Sri Lanka



# MAHAWELI DEVELOPMENT



letwork of Asian River Basin Organization

## Mahaweli Development Programme



- Mahaweli is Sri Lanka's longest river with 208 m (335 km) in length & catchment area of 10,448 Sq.km
- Mahaweli Basin generates over 12,000MCM annually and discharges to the sea around 8000 MCM.
- Mahaweli Development
   Programme is the largest
   multi-purpose (Physical and
   Human Resources)
   Development programme ever
   implemented in Sri Lanka



#### Mahaweli Master Plan Study in 1968

#### Purpose of the study.

- To provide basic information on the land and water resources of the Mahaweli Ganga Basin and the Dry Zone areas
- To Provide and overall water management plan with a view to the effective use of water for irrigation and power generation.
- To provide technical plans, Preliminary design of work, cost estimates, priorities, phasing and financing needed for implementation of the plan.



Envisages storing some six million acre feet of water in 15 reservoirs located on the Mahaweli Ganga river, its tributaries and the Maduru Oya.

> 11 of power stations with installed capacity of the stations were 508 megawatts.

The total output of firm power 2,037 million k W h. per year

The main reservoirs are Randenigala and Victoria for the irrigation supply of the Mahaweli Basin and Moragahakanda, Polgolla and Kotmale for the north central part.

The irrigation areas included in the Master Plan are grouped into 14 irrigation systems.

 Eight of these (A, B, C, D-1, D-2, E, F, G) are located in the Basin of the Mahaweli Ganga and Maduru Oya. (Irrigated area of 470,000 acres)

Remaining six systems (H, I, M, K, J) are in the north-Central part.

## Background of The Accelerated Mahaweli Programme

#### **Accelerated Mahaweli Programme**

## Started - 1977 Oct. 12 Duration - 5 years Investment cost - Rs. 20 Billion

To find employment for nearly 1.2 million

To make the country self - sufficient in rice

To meet the growing demand for power (industries, households and rural electrification)



letwork of Asian River Basin Organizations

#### Master Plan

#### Accelerated Programme







#### Achievemnts of Mahaweli Program to enhance water Security Physical Constructions

Trincomalee

SRI LANKA

Asian River Basin Organization

Polonnaruwa

| RE                | SERVOIR NAME          | CAPACITY (M | CM)                            |
|-------------------|-----------------------|-------------|--------------------------------|
| POLGOLLA          |                       | 4.1         | Anuradhapurat<br>Anuradhapurat |
| BC                | WATHENNA              | 52          | Nachchadana                    |
| КО                | THMALE                | 172         |                                |
| VICTORIA          |                       | 721         | Habaran                        |
| RANDENIGALA       |                       | 861         | Signeral Signeral              |
| RANTAMBE          |                       | 22          | Dambal On Carolina C           |
| ULHITIYA/RATKINDA |                       | 145         |                                |
| MADURUOYA         |                       | 597         | Natural Con                    |
| To                | al                    | 2574.1      |                                |
|                   | CANAL TYPE            | LENGTH KM   | Metalee ( ( ' /                |
|                   | TRANS BASIN CANAL     | >36 KM      | Kegalle Vicios                 |
|                   | MAIN CANAL            | >367 KM     |                                |
|                   | BRANCH CANAL          | >450 KM     | 10 00 10 20 30 40 km           |
|                   | DISTRIBUTARY<br>CANAL | >2600 KM    |                                |
|                   | FIELD CANAL           | >7000 KM    | Network                        |

## Polgolla Reservoir

- Dam Height (Meters)
- Dam Length (Meters) 144
- Capacity (MCM)

- **ir**14.6
  144
  4.1
- Rs. 225 M

**Completed** Year

Cost

Type of Funding

- Local

- 1976



## <u>Bowathenna</u> Reservoir

| Dam Height (Meters) | - 29'8 |
|---------------------|--------|
| Dam Length (Meters) | - 226  |
| Capacity (MCM)      | - 52   |

Power Generation (MW)

Cost - Rs.

Completed Year

Type of Funding

- Local

- 1976



- Rs. 202 M



# <u>Kothmale</u> <u>Reservoir</u>

- Dam Height (Meters) 87
- Dam Length (Meters) 600
- Capacity (MCM) 172
- Power Generation (MW)
- Cost
- Sponsored by
- **Completed** Year

- 201 (67x3)
- Rs. 5403 M
- Sweden
- 1986





## Victoria Reservoir

Dam Height (Meters) - 122

Dam Length (Meters) - 520

Capacity (MCM) - 721

Power Generation (MW)

- 210 (70x3)

- Rs. 4810 M

Cost

Sponsored by

**Completed Year** 

- United Kingdom
- 1984





## Randenigala Reservoir

- Dam Height (Meters) - 94
- Dam Length (Meters) - 485
- Capacity (MCM)
- Power Generation (MW)
- Cost
- Sponsored by
- **Completed Year**

- Rs. 4057 M

861

- Germany
- 1986





## **Rantambe Reservoir**

| Dam Height (Meters) | - 41'5 |            |
|---------------------|--------|------------|
| Dam Length (Meters) | - 420  |            |
| Capacity (MCM)      | - 22   | L.         |
| Power Generation (M | W) -   | 50 (25x2)  |
| Cost                | - F    | Rs. 5190 M |
| Sponsored by        | -      | Germany    |
| Completed Year      | -      | 1990       |



etwork of Asian River Basin Or

# <u>Ulhitiya/Rathkinda</u> Reservoir

- Dam Height (Meters) 25
- Dam Length (Meters) 4960
- Capacity (MCM)
- Cost
- **Completed Year**
- Type of Funding

- Rs. 262 M
- 1983

- 145

- Local



# <u>Maduruoya</u> <u>Reservoir</u>

Dam Height (Meters)

Dam Length (Meters)

Capacity (MCM)

- 1090

- 597

- 41

Cost

Sponsored by

**Completed Year** 

- Rs.1445 M

- Canada

- 1983





## PRESENT STATUS OF MAHAWELI DEVELOPMENT

| (1)AGRICULTURE DEVELOPMENT |                                                                |                                     |             |                                                                                                                                                                 |
|----------------------------|----------------------------------------------------------------|-------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SYSTEMS                    | ESTIMATED<br>DEVELOPED AREA<br>AS PER UNDP<br>MASTER PLAN (HA) | DEVELOPED<br>AREA UPTO<br>DATE (HA) | % COMPLETED | REMARKS                                                                                                                                                         |
| А                          | 35,304                                                         | 7,050                               | 20%         | FURTHER DEVELOPMENT RESTRICTED DUE TO ENVIRONMENTAL<br>CONSIDERATION                                                                                            |
| В                          | 44,373                                                         | 18,000                              | 41%         | MADURUOYA RB IS TO BE DEVELOPED (13,500 HA)                                                                                                                     |
| С                          | 31,134                                                         | 22,801                              | 73%         | FULL DEVELOPMENT COMPLETED                                                                                                                                      |
| D1 & D2                    | 43,198                                                         | 36,621                              | 85%         | KAUDULLA NEW AREA (1,440 HA) IS TO BE DEVELOPED UNDER<br>MORAGAHAKANDA PROJECT.KANTALE SUGARCANE AREA (5,120 HA)<br>IS TO BE DEVELOPED UNDER NCP CANAL PROJECT. |
| E                          | 8,260                                                          | 7,530                               | 91%         | FULL DEVELOPMENT COMPLETED                                                                                                                                      |
| F                          | 3,522                                                          |                                     | 0%          | TO BE DEVELOPED UNDER KALU GANGA PROJECT (3,000 HA)                                                                                                             |
| G                          | 4,453                                                          | 5,750                               | 129%        | FULL DEVELOPMENT COMPLETED.                                                                                                                                     |
| Н                          | 39,514                                                         | 50,547                              | 128%        | FULL DEVELOPMENT COMPLETED.(DEVELOPED AREA INCLUDES I/H & M/H)                                                                                                  |
| NCP (I,J,K,L,M)            | 154,089                                                        |                                     | 0%          | TO BE DEVELOPED UNDER NCP CANAL PROJECT (75,000 HA)                                                                                                             |
| Total                      | 363,847                                                        | 148,299                             | 41%         |                                                                                                                                                                 |



## PRESENT STATUS OF MAHAWELI DEVELOPMENT

| (2)POWER GENERATION POTENTIALS |                       |                                                  |                                                         |                                                                                        |
|--------------------------------|-----------------------|--------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------|
| ITEM                           | HYDROPOWER<br>STATION | INSTALLED<br>CAPACITY<br>PROPOSED IN<br>MDP (MW) | INSTALLED<br>CAPACITY<br>DEVELOPED<br>UNDER MDP<br>(MW) | REMARKS                                                                                |
| 1                              | UKUWELA               | 34                                               | 38                                                      |                                                                                        |
| 2                              | VICTORIA              | 80                                               | 210                                                     |                                                                                        |
| 3                              | KOTMALE               | 102                                              | 201                                                     |                                                                                        |
| 4                              | RANDENIGALA           | 100                                              | 122                                                     |                                                                                        |
| 5                              | RANTAMBE              |                                                  | 49                                                      |                                                                                        |
| 6                              | BOWATENNA             | 11                                               | 40                                                      | PRESENTLY RUNNING AT 11 MW                                                             |
| 7                              | MORAGAHAKAN           | 40                                               |                                                         | PROPOSED INSTALLED CAPACITY IS 27 MW                                                   |
| 8                              | UPPER UMA OYA         | 25                                               |                                                         | TO BE DIVERTED TO SEDZ.PROPOSED INSTALLED CAPACITY IS 120 MW                           |
| 9                              | LOWER UMA<br>OYA      | 29                                               |                                                         | PROPOSED INSTALLED CAPACITY IS 25 MW FOR LOWER UMA OYA & THAT FOR THALPITIGALA IS 5 MW |
| 10                             | TALDENA               | 13                                               |                                                         |                                                                                        |
| 11                             | PALLEWELA             | 10                                               |                                                         |                                                                                        |
| 12                             | HASALAKA OYA          | 11                                               |                                                         | PROPOSED INSTALLED CAPACITY IS 14 MW                                                   |
| 13                             | HEEN GANGA            | 6                                                |                                                         | PROPOSED INSTALLED CAPACITY IS 3 MW                                                    |
| TOTAL 461                      |                       | 660                                              |                                                         |                                                                                        |



## **Upper watershed management**



## **UPPER MAHAWELI WATERSHED MANAGEMENT**

 Catchment areas of Kothmale, Victoria, Randenigala., District of Kandy, Nuwaraeliya and Badulla.

To preserve the Mahaweli catchment area of 3,200 sq.km by developing vegetation cover and the application of soil conservation measures to maintain the water storage capacity for down stream development

- Catchment Quality Improvement
- Soil conservation measures
- Conservation oriented Agriculture
   development
- Monitoring of watershed hydrology
- Minimization soil erosion

- Vegetation development in catchment areas.
- Minimization of encroachment in Mahaweli River, streams and reservoir banks.
- Improved domestic waste management
  - Reduce earth slips and flood damages.



## **Biological Soil Conservation Programs**





## Soil and water Conseravation Measures









## **Catchment Conservation Activities**



#### **Proper O&M of Reservoirs and Water Conveyances**

Mahaweli Authority spends around Rs. 600 to 1000 million annually for up keeping and operation and maintenance of water infrastructure.







## Integrated approach to reduce water usage and increase productivity



#### Integrated approach to reduce water usage and increase productivity

| System             | No of Organizations |
|--------------------|---------------------|
| System C           | 197                 |
| System H           | 222                 |
| System B           | 133                 |
| System G           | 41                  |
| System Hurulu wewa | 82                  |
| System UW          | 279                 |
| System L           | 15                  |
| Rambakenoya        | 08                  |
| Total              | 977                 |

#### INSTITUTIONAL ARRANGEMENT FARMER ORGANISATIONS AT MAHAWELI SYSTEMS



#### Proper O & M of Reservoirs and Conveyances



#### Practice of Bulk Water Allocation

Mahaweli System "H" Water Duty - After the Introduction of Water Quota System



Yala Season - (1999 - 2008)





#### Performance in Paddy Production

#### Average yield in Maha season(2011/2012) - 6289kg/ha



Average Yield of Paddy in Mahaweli Areas Compared to National Average (Yala Season) 7 6 5 Mt/Ha 4 3 2 1 0 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 Mahaweli 4.84 4.77 5.2 4.96 5.25 5.45 5.6 5.62 5.57 6.19National 3.74 3.71 4.23 3.98 4.26 4.46 4.25 4.19 4.44 4.42

#### Source : Mahaweli Hand Book 2011, Planning & Monitoring Unit



Average Yield of Paddy in Mahaweli Areas Compared to National Average (Maha Season)



#### Increase of Diversified Crop areas (OFC & Fruits)

Instead of monoculture farming MASL introduce the optimum crop diversification strategies within it's production area.





# Rehabilitation of Dams/Reservoirs for sustainability of water security



#### **Objective:**

Establish long-term sustainable arrangements for operation and maintenance of large dams; and improve water Security Enhancement.

Rehabilitation of Dams and Reservoirs are being carried out under Component 1( Dam safety and Operational Efficiency.) of the Dam safety and Water Resources Planning Project Financed by World Bank and GOSL

#### REHABILITATATED DAMS UNDER MASL

- 1. POLGOLLA
- 2. BOWATHENNA
- 3. KOTHMALE
- 4. VICTORIA
- 5. RANDENIGALA
- 6. RANTAMBE
- 7. MADURUOYA
- 8. KALA WEWA
- 9. KANDALAMA WEWA
- 10. DAMBULU OYA
- 11. CHANDRIKA WEWA







# **FUTURE PROJECTS**



# MORAGAHAKANDA – KALUGANGA RESERVOIRS







## RAISING MADURU OYA SPILLWAY by 2.0 m

# Capacity will increased by another 134 MCM







## Raising Kotmale Dam by another 30 m

## Capacity will increase by 345 MCM





# Raising of Minipe Anicut by 4.0 m.

Spillage over the anicut after daily power generation of Rantembe Reservoir power house can be retained at the pond created by raising anicut by 1.0 MCM







Diversion of Water from Randenigala Reservoir upto Moragahakanda Kalugaga eservoir complex.

Pumping Water from Mahaweli River to Minneriya Tank







# Diversion of water to other basins – Meeoya, NCP Canal.





# NCP Canal.









#### SUMMARY OF POTENTIAL PROJECTS UNDER MAHAWELI PROGRAMME TO ENHANCE WATER SECURITY

| NAME OF PROJECT                   | ENHANCED CAPACITY<br>(MCM) | EXTENT/ SERVICE AREA                                                                         |
|-----------------------------------|----------------------------|----------------------------------------------------------------------------------------------|
| Moragahakanda Reservoir           | 569.9                      | System H, G & D                                                                              |
| Kaluganga Reservoir               | 265.6                      | System H, G , D & F                                                                          |
| Raising Kothmale Dam              | 345.0                      | System H, G & D                                                                              |
| Raising Maduruoya                 | 134.0                      | System B – RB area                                                                           |
| Raising Minipe Anicut             | 1.0                        | System B, C, E                                                                               |
| Malwathu Oya Reservoir            | 200.0                      | System M, 13,000 Hectares                                                                    |
| Yan Oya Reservoir                 | 169.0                      | System I, 5000 Hectares                                                                      |
| Kivul Oya Reservoir               | 55.0                       | System L , 1700 Hectares                                                                     |
| Randenigala – Kaluganga Diversion | -                          | System H, G & D (200.0 MCM Diversion)                                                        |
| Upper Elahera & NCP Canal         | _                          | North Central & Northern<br>Province (1000.0 MCM<br>Diversion including 100 MCM<br>pumping ) |

# THANK YOU ..

